A graphical model approach to ATLAS-free mining of MRI images
نویسندگان
چکیده
Improvements in medical imaging techniques have provided clinicians the ability to obtain detailed brain images of patients at lower costs. This increased availability of rich data opens up new avenues of research that promise better understanding of common brain ailments such as Alzheimer’s Disease and dementia. Improved data mining techniques, however, are required to leverage these new data sets to identify intermediate disease states (e.g., mild cognitive impairment) and perform early diagnosis. We propose a graphical model framework based on conditional random fields (CRFs) to mine MRI brain images. As a proof-of-concept, we apply CRFs to the problem of brain tissue segmentation. Experimental results show robust and accurate performance on tissue segmentation comparable to other state-of-the-art segmentation methods. In addition, results show that our algorithm generalizes well across data sets and is less susceptible to outliers. Our method relies on minimal prior knowledge unlike atlas-based techniques, which assume images map to a normal template. Our results show that CRFs are a promising model for tissue segmentation, as well as other MRI data mining problems such as anatomical segmentation and disease diagnosis where atlas assumptions are unreliable in abnormal brain images.
منابع مشابه
Graphical models - methods for data analysis and mining
The best ebooks about Graphical Models Methods For Data Analysis And Mining that you can get for free here by download this Graphical Models Methods For Data Analysis And Mining and save to your desktop. This ebooks is under topic such as data mining with graphical models pdfsmanticscholar data mining with graphical models borgelt data mining with graphical models springer data mining with poss...
متن کاملComparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملNew Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor
Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing scientific researches construct this pseudo-CT image using the registration techniques. However, these techniques suffer from the local minima of the non-rigid deformation energy f...
متن کاملGenerating the synthetic CT (sCT) and synthetic MR (sMR: sT1w/sT2w) images of the brain using atlas based method
Introduction: Radiation therapy planning (RTP) is one of the clinical applications in which both CT scan and MRI are used. MR and CT images are applied to determine the target volume and calculation of dose distribution, respectively. In addition, using two imaging modalities increases the department workload and cost. In this study, an algorithm was presented to create synthet...
متن کاملGenerating Synthetic Computed Tomography and Synthetic Magnetic Resonance (sMR: sT1w/sT2w) Images of the Brain Using Atlas-Based Method
Introduction: Nowadays, magnetic resonance imaging (MRI) in combination with computed-tomography (CT) is increasingly being used in radiation therapy planning. MR and CT images are applied to determine the target volume and calculate dose distribution, respectively. Since the use of these two imaging modalities causes registration uncertainty and increases department w...
متن کامل